
COSC427: Advanced OO Design

Exam 2008

Time allowed: 2 hours.

Number of pages: 7.

Number of questions: 6.

Total marks: 100.

Resources: Open book: You may use any printed or electronic
resources. You may not communicate, directly or
electronically, with other people.

If you want to print anything, ask a supervisor to
collect it from the printer for you.

Answers: Write all answers in your answer book.

2 COSC427

1. [40 marks] This question refers to the UML class diagram of the Stockbrokers
design in Figure 1 and explanatory notes in Figure 2. Criticise the design. For
each criticism, cite any maxims, principles, smells, etc that back up your
arguments, and clearly explain how you would improve the design to address the
problem. Use UML where it aids communication. Document any assumptions
you need to make.

Figure 1: StockBrokers system class diagram

3 COSC427

• This design keeps track of a stockbroker’s customers, current stock prices, and
trades of stock between customers.

• Broker represents a stockbroker. It stores a list of StockHolders: the
customers who trade stock through this Broker. A Broker also has a
brokersAccount, which is another StockHolder instance that keeps track of
contact and financial info about the Broker itself rather than about a customer.
Broker also stores a collection of all Stock master records (see below for
more on master records).

• Broker has a display() method that accepts a flag telling it what to display.
This method then forwards requests to GUI methods.

• GUI can display various screens of info, and carry out stock trades requested
by the user. All of the methods of GUI are static.

• GUI also stores a record of all past trades. It does this using a Map indexed by
a master Stock record (the seller’s holding), with a value which is a Pair
object. The Pair records the Stock object resulting from the trade (the buyer’s
holding) and the date of the trade (in o1 and o2, respectively).

• StockHolder stores name, phone and balance for a customer account. If a
customer has more than one account, the next reference points to another
StockHolder instance, which represents an additional account for that
customer. That too may have a next pointer for a 3rd account, and so on.

• StockHolder also stores a set of Pair objects to keep track of Stock owned
by that StockHolder. If a StockHolder currently owns a Stock, the Price
object for that Stock is stored in o1, and the date of purchase in o2. If the
Stock has already been sold by the StockHolder, this is indicated by
reversing the 2 fields of Pair so that o1 holds the sale date and o2 holds the
Price object.

• Broker, GUI and StockHolder are in a package together. The fields of these
3 classes have package access, so they can access each other’s data without
exposing it to any classes from other packages.

• Stock represents the sellable shares of a company. It stores the company
name. Stock’s methods allow its fields to be read and changed; each method
returns a field’s value, and if the parameter is non-null, the field is also
updated to match the parameter.

• If a Stock’s master field is null, that means the Stock object is a master
record, which represents all the shares for a company. In this case units
contains the total number of shares in circulation, and owner must be null.
The price is the current sharemarket purchase price.

• If a Stock’s master field is not null (i.e. it references a Stock master record),
this object records ownership of some shares of the Stock. The owner is the
StockHolder, and units indicates how many shares are owned. The price
field stores the price paid at the time of purchase.

• Price records how much a share of a Stock cost at some point in time.
Whenever a price changes, a new Price object is constructed, wrapping up the
Stock to which it applies.

• Pair is a utility class that can hold any two Objects.
Figure 2: Stockbrokers system notes

4 COSC427

2. [14 marks for whole question] For each statement in parts (a) – (l) provide a
word or phrase that best captures the idea (give a wiki page name if possible) and
write a concise sentence explaining your answer.

(a) [2 marks] A maxim that contrasts with the culture of software reuse.

(b) [2 marks] A maxim that might be measured automatically by software tools.

(c) [2 marks] A maxim that can never be measured automatically by software
tools.

(d) [2 marks] A maxim violated by the GoF Strategy pattern.

(e) [2 marks] A GoF pattern that allows a single object to do the job of multiple
similar objects by externalising their changeable properties.

(f) [2 marks] A pattern that encourages the use of abstract getters and setters
instead of accessing attributes.

(g) [2 marks] A pattern likely to be most helpful when developing a system to
record the contents of a warehouse and the associated income and expenditure.

3. [4 marks] A well known quote from Kent Beck says: “Make it work. Make it
right. Make it fast.” What does he mean, and why?

4. [4 marks] What is the principal message of Foote and Yoder’s Big Ball of Mud
paper? Write as concise a synopsis as possible.

5. [6 marks] Cohesion and coupling are influential software design concepts.
Identify maxims (as many as you can) that encourage high cohesion and low
coupling. Explain your answers.

5 COSC427

6. [32 marks for whole question] The following questions refer to the UML class
diagram in Figure 3 and explanatory notes in Figure 4. Some getters and setters
and other details are omitted from the diagram, but may be assumed where
necessary. (Recall that a # in UML means protected, and an underline means
static.) Document any non-trivial assumptions you need to make.

(a) [24 marks] Find as many Gang of Four design patterns as you can in the
Irrigation design. Name each pattern and describe where and how it is used in
this design. Provide just enough information to make it clear how and why the
pattern is applied here. Note any important variations from the standard
pattern. There is no need to comment on the value of the pattern.

(b) [8 marks] How would you extend this design to allow irrigation system
models to be stored in (and retrieved from) a relational database? Explain
your design, including any additional patterns used. Use UML where it aids
communication.

6 COSC427

Figure 3: Irrigation system class diagram

7 COSC427

• This software models assembly and performance of irrigation systems.
• A system is assembled from Hoses and Fittings, joined by Couplings.
• A Hose is a length of tube, of a particular HoseType. Most of Hose’s methods

are implemented by simply forwarding requests to HoseType, passing Hose
length when necessary.

• A HoseType represents an available hose product, such as 13mm PVC pipe.
Currently only two such products are supported, but more may be added later.
The constructors of HoseType and its subclass are protected to ensure no
client class constructs instances. Hoses in existing systems don’t usually
change their HoseTypes, but it is helpful to be able to model systems
constructed from different materials.

• A Fitting plugs in to 1 or more Hoses (via Couplings), depending on what kind
of fitting it is.

• A Joiner is a Fitting that has 2 or more Couplings, so it connects Hoses.
• An End attaches to 1 hose and so is a terminal Fitting. An Intake supplies

water to the system, while an Outlet emits it.
• An OpenJoiner acts like an outlet, but is in fact a Joiner with an unconnected

coupling.
• A Coupling joins a Fitting to a Hose. The flow calculations depend on the

kind of coupling (BAYONET, etc).
• Each IrrigationComponent has a condition that can change over time. A

component that is working normally uses a direct instance of
ComponentCondition (whose methods leave pressure and flow unchanged),
but a blockage or puncture in the component can be modelled using a
Blockage or Puncture condition.

• A Plumber makes assembly of systems easier. Its methods allow
IrrigationComponents to be created and automatically joined to the last
unconnected Coupling of the right type. The getSystem() method provides
access to the resulting system.

• IrrigationSystem simplifies use of an irrigation model, for clients that need
only to test its performance in straightforward ways. More sophisticated
clients can acces the IrrigationComponents directly.

Figure 4: Irrigation system notes

END OF PAPER

