
COSC427: Advanced OO Design

Exam 2007

Time allowed: 2 hours.

Number of pages: 5.

Number of questions: 6.

Total marks: 100.

Resources: Open book: You may use any printed or electronic
resources. You may not communicate, directly or
electronically, with other people.

If you want to print anything, ask a supervisor to
collect it from the printer for you.

Answers: Write all answers in your answer book.

2 COSC427

1. [26 marks for whole question] For each part (a)-(m), name the idea (or ideas)
that best match the description and briefly explain your answer. If possible,
include WikiNames.

(a) [2 marks] Keep the number of fields in a class small.

(b) [2 marks] Methods should use most of the fields of the method’s object.

(c) [2 marks] When several methods cooperate to do a job, give them the same
name.

(d) [2 marks] Objects should invoke methods of contained objects.

(e) [2 marks] A CodeSmell that supports one of RielsHeuristics.

(f) [2 marks] A pattern that conflicts with TellDontAsk.

(g) [2 marks] A pattern that supports TellDontAsk.

(h) [2 marks] A pattern that employs DoubleDispatch.

(i) [2 marks] A pattern based on ModelTheRealWorld.

(j) [2 marks] A pattern that conflicts with one of RielsHeuristics.

(k) [2 marks] A pattern that exhibits a CodeSmell.

(l) [2 marks] An architectural pattern that contains a design pattern.

(m)[2 marks] A design problem that the Waterfall Process was intended to fix.

2. [10 marks] Which of RielsHeuristics can be traced back to ideas described in
JohnsonAndFoote1988? For each heuristic you identify, explain how it is based
on the earlier idea.

3. [16 marks for whole question] For each of the following maxims (a)-(d) name
other maxims (as many as you can) that support it. Briefly explain each answer.

(a) [4 marks] ProgramToTheInterfaceNotTheImplementation.

(b) [4 marks] SeparationOfConcerns.

(c) [4 marks] SoftwareReuse

(d) [4 marks] OpenClosedPrinciple

3 COSC427

4. [8 marks for whole question] Describe a design flaw in a 427 project produced
by one of your classmates. Choose the most serious flaw you can find, clearly
describe where it occurs (including where it can be found in the wiki) and support
your argument, where possible, with maxims etc.

5. [5 marks] Imagine it was your job to interview an applicant for an OO design
job. If you were allowed to ask only one question, and from the answer you had
to judge whether the person was a skilled OO designer, what would you ask?
Explain your reasoning.

6. [35 marks for whole question] The following questions refer to the UML class
diagram in Figure 1 and explanatory notes in Figure 2. Some getters and setters
and other details are omitted from the diagram, but may be assumed where
necessary. Document any non-trivial assumptions you need to make.

(a) [18 marks] Find as many Gang of Four design patterns as you can in the
Trains design. Name each pattern and describe where and how it is used in
this design. Provide just enough information to make it clear how and why the
pattern is applied here. Note any important variations from the standard
pattern. There is no need to comment here on the value of the pattern (but see
next question).

(b) [17 marks] Criticise and illuminate the design. Find as many weaknesses or
issues as you can, and wherever possible name relevant maxims, smells,
refactorings, etc, to reinforce your arguments. Also explain how each problem
could be fixed.

4 COSC427

Figure 1: Trains class diagram

5 COSC427

• This is a preliminary design for managing railway Trains. Each Train
consists of an optional Locomotive and some RollingStock (i.e. railway
vehicles that can’t move themselves). In North American installations, a
Train may also have a caboose, which is just the last wagon fitted with a
flashing light.

• Locomotives and RollingStock are RailVehicles. Each
RailVehicle knows the RailVehicle coupled immediately before and
after it. These next and prev references are set by the join() method.

• When a RailVehicle is told to brake(), it applies its own brakes and also
passes the message to its next RailVehicle, if one exists.

• Similarly, when a RailVehicle is asked to getLocation(), it forwards
the request to its prev RailVehicle, if one exists. When the request
reaches the Locomotive at the front of the train, it returns its location.

• A Locomotive pulls or pushes a Train. The startEngine() method must
be called, then setSpeed() tells it what speed to accelerate to. A negative
speed indicates reverse.

• Locomotives that have not fully warmed up to operating temperature should
be handled more gently. This is achieved by forwarding engine commands to
an EngineMode, which is either Warming or Hot. Other Locomotive
behaviours depend on what kind of Locomotive it is, as indicated by the
model number.

• Locomotives regularly report their changes of location to a
CentralTrafficControl object, which can slow or stop trains to avoid
collisions and congestion.

• When two Locomotives are used together, they form a MultipleUnit.
The front Locomotive is known as the aUnit and the second as the bUnit.

• A Slug has no engine, so overrides startEngine() to do nothing. It can
only be used as a bUnit, because it needs a power source from an aUnit.

• RollingStock implementations differ depending on user preference. North
American installations typically use BoxCars, while elsewhere Vans are used.

• Sometimes an unused or broken Locomotive is pulled as if it were
RollingStock. InactiveLoco caters for this situation.

Figure 2: Trains notes

END OF PAPER

