
COSC324 Wal’s lectures

© Warwick Irwin 2008 1

Advanced OO

• Collections
• Java generics (etc)

• OO wisdom
• Design patterns

Java Collections

• Collections:
o Contain a bunch of objects.
o Implement relationships.
o Support iteration.
o Are an essential part of OO libraries.
o Supercede “data structures” in pre-OO

design.
o Got fixed up in Java 2.

Immoral relationships

Student
name
next

0..1

0..1

Pandora

Grizelda

Olga

public Student getAllKlingons()
{

Student klingons;
for (Student s = allStuds; s != null; s = s.next)
{

if (!s.isKlingon())
{

s.next = klingons; // Eeeek!
klingons = s;

}
}
return klingons;

}

allStuds

Using arrays for relationships

Student
name
foodEaten: Pizza[]

Pizza
flavour
eatenBy: Student[]

* *

• Array limitations:
o Fixed size (wastes space, complicates code…)
o Allows duplicate entries.
o Enforces ordering.
o Rigid indexing (0..n).
o Awkward to remove items.
o Linear searching.

COSC324 Wal’s lectures

© Warwick Irwin 2008 2

Better

Student
name
foodEaten: Set

Pizza
flavour
eatenBy: Set

* *

public void eat(Pizza: food)
{

foodEaten.add(food);
food.addEatenBy(this);

}
Set allStudents;
Set klingons;

Java collection Interfaces

<<interface>>
Collection

<<interface>>
Set

<<interface>>
List

<<interface>>
Map

<<interface>>
SortedSet

<<interface>>
SortedMap

import java.util.*;

Collection & Iterator
<<interface>>
Collection

size(): int
isEmpty(): boolean
contains(o: Object): boolean
add(o: Object): boolean
remove(o: Object): boolean
iterator(): Iterator
containsAll(c: Collection): boolean
addAll(c: Collection): boolean
removeAll(c: Collection): boolean
retainAll(c: Collection): boolean
clear(): void
toArray(): Object[]

<<interface>>
Iterator

hasNext(): boolean
next(): Object
remove(): void

Iterator fooIter = foos.iterator();
while (fooIter.hasNext()) {

Foo foo = (Foo) fooIter.next();
foo.twiddle();
...

}

1 0..*

static void filter(Collection c) {
Iterator i = c.iterator()
while (i.hasNext()) {

Wibble w = (Wibble) i.next();
if (!cond(w))

i.remove();
}

Set: No duplicates

<<interface>>
Collection

<<interface>>
Set

import java.util.*;

public class FindDups {
public static void main(String args[]) {

Set s = new HashSet();
for (int i=0; i<args.length; i++)

if (!s.add(args[i]))
System.out.println("Duplicate detected: "+ args[i]);

System.out.println(s.size()+" distinct words detected: "+s);
}

}

Set semantics

• s1.containsAll(s2) -- s2 is a subset
• s1.addAll(s2) -- union
• s1.retainAll(s2) -- intersection
• s1.removeAll(s2) -- difference

Idiom: Given any collection c, make a copy
with no duplicates:

Collection noDups = new HashSet(c);

When are 2 objects the same?
public void foo(Set mySet) {

mySet.add(“blarg”); // Works
mySet.add(“blarg”); // Doesn’t work.

}

public boolean add(Object o) {
…
if (oldObject.equals(o))

return false;
…

}

How?

COSC324 Wal’s lectures

© Warwick Irwin 2008 3

equals() & hashCode()

public class Person {
private String name;

public boolean equals(Object o) {
if (o instanceof Person) {

Person p = (Person) o;
return name.equals(p.name);

}
return false;

}
} If you override equals(),

you must also override hashCode().

public int hashCode() {
return name.hashCode();

}

Equals & inheritance

public boolean equals(Object o) {
if (o == this) return true;
if (o == null) return false;
if (getClass() != o.getClass()) return false;

Foo that = (Foo) o;
return <Do the real comparisons here.>

}

public class Ghost extends Person {
private int transparency;

public boolean equals(Object o) {
if (o instanceof Ghost) {

Ghost g = (Ghost) o;
return name.equals(g.getName()) &&

transparency == g. transparency;
}
return false;

}
}

Person nick = new Person(“Nick”);
Person nhNick = new Ghost(“Nick”, 50);
System.out.println(nick.equals(nhNick));
System.out.println(nhNick.equals(nick));

List: ordered, duplicates allowed

• add() & addAll() append
• remove(o) takes out first match
• Supercedes Vector

<<interface>>
List

get(index: int): Object
set(index: int, o: Object): Object
indexOf(o: Object): int
lastIndexOf(o: Object): int
…

<<interface>>
Collection

<<interface>>
Iterator

<<interface>>
ListIterator

Works as expected

Adds bi-directional
navigation & inserting

ListIterator

<<interface>>
ListIterator

hasPrevious():boolean
previous(): Object
nextIndex(): int
previousIndex(): int
add(o: Object): void
set(o: Object): void

<<interface>>
Iterator

hasNext(): boolean
next(): Object
remove(): void

public boolean swapLast(List l, Object oldO, Object newO) {

ListIterator i = l.listIterator(l.size());
while (i.hasPrevious()) {

if (i.previous() == oldO) {
i.set(newO);
return true;

}
}

return false;
}

int index = l.lastIndexOf(oldO);
if (index == -1)

return false;
l.set(index, newO);
return true;

ConcurrentModificationException

Iterator fooIter = foos.iterator();
while (fooIter.hasNext()) {

Foo foo = (Foo) fooIter.next();
foo.twiddle();
...

}

public void twiddle() {
foos.add(new Foo());

}

Exception in thread “main” java.util.ConcurrentModificationException
at java.util.AbstractList$Itr.checkForComodification(Unknown Source
at java.util.AbstractList$Itr.next(Unknown Source)
at Foo.main(Foo.java:20)

Map: indexed (uniquely)

• Supercedes Hashtable<<interface>>
Map

put(key: Object, value: Object): Object
get(key: Object): Object
remove(key: Object): Object
size(): int
isEmpty(): boolean
containsKey(key: Object): boolean
containsValue(value: Object): boolean
putAll(t: Map): void
keySet(): Set
values(): Collection
entrySet: Set

public class Frequency {
private static final Integer ONE = new Integer(1);
public static void main(String args[]) {

Map m = new HashMap();
for (int i=0; i<args.length; i++) {

Integer freq = (Integer) m.get(args[i]);
m.put(args[i], (freq==null ? ONE :

new Integer(freq.intValue() + 1)));
}
System.out.println(m.size()+" distinct words:");
System.out.println(m);

}
}

COSC324 Wal’s lectures

© Warwick Irwin 2008 4

Iterating over a Map
public void grokNicknames(Map nicknames) {

Iterator keyIter = nicknames.keySet().iterator();
while (keyIter.hasNext()) {

String nickname = (String) keyIter.next();
...

}

Iterator valueIter = nicknames.values().iterator();
while (valueIter.hasNext()) {

Dude dude = (Dude) valueIter.next()
...

}
Iterator entryIter = nicknames.entrySet().iterator()

while (entryIter.hasNext()) {
Map.Entry entry = (Map.Entry) entryIter.next();
String nickname = (String) entry.getKey();
Dude dude = (Dude) entry.getValue();
...

}
}

<<interface>>
SortedSet

first(): Object
last(): Object
subSet(from: Object, to: Object): SortedSet
headSet(to: Object): SortedSet
tailSet(from: Object): SortedSet
comparator(): Comparator

Sorted collections

<<interface>>
SortedMap

firstKey(): Object
lastKey(): Object
subMap(fromKey: Object, toKey: Object): SortedMap
headMap(toKey: Object): SortedMap
tailMap(fromKey: Object): SortedMap
comparator(): Comparator

<<interface>>
Set

<<interface>>
Map

<<interface>>
Collection

Natural order

Set snorks = new TreeSet();
snorks.add(new Snork(“Grizelda”, 6));

class Snork {
String name;
int IQ;

Snork(String theName, int theIQ) {
name = theName;
IQ = theIQ;

}
}

Exception in thread “main” java.lang.ClassCastException
at java.util.TreeMap.compare(Unknown Source)
at java.util.TreeMap.put(Unknown Source)
at java.util.TreeSet.add(Unknown Source)
at Snork.main(Snork.java:14)

<<interface>>
Comparable

compareTo(o: Object): int

implements Comparable

public int compareTo(Object o) {
assert o instanceof Snork;
Snork that = (Snork) o;
int res = name.compareTo(that.getName());
if (res != 0)

return res;

if (IQ < that.getIQ())
return -1;

if (IQ > that.getIQ())
return 1;

return 0;
}

Alternate orders

<<interface>>
Comparator

compare(o1: Object, o2: Object): int

SortedSet snorksByIQ = new TreeSet(
new Comparator() {

public int compare(Object o1, Object o2) {
assert o1 instanceof Snork;
assert o2 instanceof Snork;
Snork snork1 = (Snork) o1;
Snork snork2 = (Snork) o2;
if (snork1.getIQ() < snork2.getIQ())

return -1;
if (snork1.getIQ() > snork2.getIQ())

return 1;
return 0;

}
}

);

Implementation matrix

LinkedListLinked list

TreeMapTreeSetTree

ArrayListArray

HashMapHashSetHash table

MapListSet

Java collection Implementations

AbstractCollection

AbstractSet AbstractList

AbstractMap

Collection

Set List

HashSet

TreeSet

ArrayList

AbstractSequentialList

LinkedList

Map

SortedSet

HashMap

TreeMap
SortedMap

COSC324 Wal’s lectures

© Warwick Irwin 2008 5

Algorithms
Collections

$ binarySearch(list: List, key: Object): int
$ binarySearch(list: List, key: Object, c: Comparator): int
$ indexOfSubList(source: List, target: List): int
$ max(coll: Collection): Object
$ max(coll: Collection, c: Comparator): Object
$ min(coll: Collection): Object
$ min(coll: Collection , c: Comparator): Object
$ replaceAll(list: List, oldVal: Object, newVal: Object): boolean
$ reverse(list: List): void
$ sort(list: List): void
$ sort(list: List , c: Comparator): void
$ unmodifiableSet(s: Set): Set
$ unmodifiableList(list: List): List
$ unmodifiableMap(m: Map): Map
…

To me, collection classes are one of the most powerful
tools for raw programming. You might have gathered
that I’m somewhat disappointed in the collections
provided in Java through version 1.1. As a result, it’s a
tremendous pleasure to see that collections were given
proper attention in Java 2, and thoroughly redesigned
(by Joshua Bloch at Sun). I consider the collections
library to be one of the two major features in Java 2
(the other is the Swing library) because they
significantly increase your programming muscle and
help bring Java in line with more mature programming
systems. -- Bruce Eckel.

Collections design goals
Design Goals
The main design goal was to produce an API that was reasonably small, both in size, and, more

importantly, in "conceptual weight." It was critical that the new functionality not seem alien to
current Java programmers; it had to augment current facilities, rather than replacing them. At the
same time, the new API had to be powerful enough to provide all the advantages described
above.

To keep the number of core interfaces small, the interfaces do not attempt to capture such subtle
distinctions as mutability, modifiability, resizability. Instead, certain calls in the core interfaces
are optional, allowing implementations to throw an UnsupportedOperationException to indicate
that they do not support a specified optional operation. Of course, collection implementers must
clearly document which optional operations are supported by an implementation.

To keep the number of methods in each core interface small, an interface contains a method only if
either:

1. It is a truly fundamental operation: a basic operations in terms of which others could be
reasonably defined,

2. There is a compelling performance reason why an important implementation would want to
override it.

It was critical that all reasonable representations of collections interoperate well. This included arrays,
which cannot be made to implement the Collection interface directly without changing the
language. Thus, the framework includes methods to allow collections to be dumped into arrays,
arrays to be viewed as collections, and maps to be viewed as collections.

http://www.cosc.canterbury.ac.nz/web_software/docs/java_docs/guide/collections/overview.html

for (Monster monster: monsters)
monster.bite(victim);

Java 1.5
• Biggest ever change to Java:

o Generics.
o Enhanced for loop.
o Autoboxing.
o Varargs.
o Printf.
o Typesafe enums.

o Annotations.
o Static imports.

Generics
List monsters = new ArrayList();
monsters.add(new Vampire(“Dracula”));
monsters.add(new Gorgon(“Medusa”));
monsters.add(new Lecturer(“Neville”));
…
…
…
Monster myMonster = (Monster) monsters .get(1);

List<Monster> monsters = new ArrayList<Monster>();
monsters.add(new Vampire(“Dracula”));
monsters.add(new Gorgon(“Medusa”));
monsters.add(new Lecturer(“Neville”));
…
…
…
Monster myMonster = monsters .get(1);

Parameterized type

Compile-time type safety

COSC324 Wal’s lectures

© Warwick Irwin 2008 6

Generic iterators

public void attack(Set<Monster> monsters, Person victim) {
Iterator monsterIter = monsters.iterator();
while (monsterIter.hasNext()) {

Monster monster = (Monster) monsterIter.next();
monster.bite(victim);

}
}

Monster

bite()

public void attack(Set<monster> monsters, Person victim) {
Iterator<Monster> monsterIter = monsters.iterator();
while (monsterIter.hasNext()) {

Monster monster = monsterIter.next();
monster.bite(victim);

}
}

public void attack(Set<monster> monsters, Person victim) {
Iterator<Monster> monsterIter = monsters.iterator();
while (monsterIter.hasNext())

monsterIter.next().bite(victim);
}

Enhanced for

public void attack(Set<Monster> monsters, Person victim) {
for (Monster monster: monsters)

monster.bite(victim);
}

int[] a = { 1, 2, 3 };
for (int i: a) {

System.out.println(i);
}

public void attack(Set<Monster> monsters, Person victim) {
Iterator<Monster> monsterIter = monsters.iterator();
while (monsterIter.hasNext())

monsterIter.next().bite(victim);
}

Autoboxing

int i = 42;
Integer io = new Integer(256);
i = io.intValue();
io = new Integer(i);

int i = 42;
Integer io = 256;
i = io;
io = i;

box

unbox

Set numbers = new HashSet();
numbers.add(new Integer(3));
…
Iterator numIter = numbers.iterator();
while (numIter.hasNext()) {

Integer num = (Integer) numIter.next();
int i = num.intValue();
System.out.println(i);

}

box

unbox

Set<Integer> numbers = new HashSet<Integer> ();
numbers.add(3);
…
for (int i: numbers) {

System.out.println(i);
}

autobox

autounbox

Map example revisited
public class Frequency {

private static final Integer ONE = new Integer(1);
public static void main(String args[]) {

Map m = new HashMap();
for (int i=0; i<args.length; i++) {

Integer freq = (Integer) m.get(args[i]);
m.put(args[i], (freq==null ? ONE :

new Integer(freq.intValue() + 1)));
}

}
} public class Frequency {

public static void main(String args[]) {
Map<String, Integer> m = new HashMap<String, Integer>();
for (String word : args) {

Integer freq = m.get(word);
m.put(word, (freq == null ? 1 : freq + 1));

}
}

}

Generics & subtyping
Monster

Vampire Gorgon

List<Monster>

List<Vampire>

List<Vampire> vampires = new ArrayList<Vampire>();
List<Monster> monsters = vampires;
…
monsters.add(new Gorgon(“Medusa”));
…
Vampire myVampire = vampires.get(1);

public void attack(Set<? extends Monster> monsters, Person victim) {
for (Monster monster: monsters)

monster.bite(victim);
}

Generics & subtyping
public void attack(Set<Monster> monsters, Person victim) {

for (Monster monster: monsters)
monster.bite(victim);

}

Set<Vampire> vampires = new ArrayList<Vampire>();
…
attack(vampires, roger);

public void print(Collection<?> stuff) {
for (Object o: stuff)

System.out.println(o);
}

wildcard

bounded wildcard

COSC324 Wal’s lectures

© Warwick Irwin 2008 7

Declaring generics

public interface List<E> {
void add(E x);
Iterator<E> iterator();

}

public interface Iterator<E> {
E next();
boolean hasNext();

}

public interface List {
void add(Object x);
Iterator iterator();

}

public interface Iterator {
Object next();
boolean hasNext();

}

Generic methods

public void fromArrayToCollection(Object[] a, Collection<?> c) {
for (Object o : a) {

c.add(o); // compile time error
}

}

public <T> void fromArrayToCollection(T[] a, Collection<T> c) {
for (T o : a) {

c.add(o); // correct
}

}

Mixing old & new
public void attack(Set<? extends Monster> monsters, Person victim) {

for (Monster monster: monsters)
monster.bite(victim);

}

Set oldSet = new HashSet();
oldSet.add(new Vampire(“Tinky Winky”));
attack(oldSet, Po);

> Note: Monster.java uses unchecked or unsafe operations

javac –source 1.4 Monster.java

Varargs
public void printGroup(int id, String[] members) {

System.out.println(“Group “ + id + “ contains: “);
for(String s: members)

System.out.println(s);
}

String[] group1 = { “Pooh”, “Tigger”, “Eeyore” };
printGroup(1, group1);

public void printGroup(int id, String… members) {
System.out.println(“Group “ + id + “ contains: “);
for(String s: members)

System.out.println(s);
}

printGroup(1, “Pooh”, “Tigger”, “Eeyore”);

Bo
th

 w
ork!

The march of progress
• 1980: C

• 1988: C++

• 1996: Java

• 2004: Java
System.out.printf("%10.2f", x);

printf("%10.2f", x);

cout << setw(10) << setprecision(2) << showpoint << x;

java.text.NumberFormat formatter = java.text.NumberFormat.getNumberInstance();
formatter.setMinimumFractionDigits(2);
formatter.setMaximumFractionDigits(2);
String s = formatter.format(x);
for (int i = s.length(); i < 10; i++)

System.out.print(' ');
System.out.print(s);

Printf

int x = 5;
int y = 6;
int sum = x + y;

System.out.println(x + " + " + y + " = " + sum);
System.out.printf("%d + %d = %d\n", x, y, sum);

public PrintStream printf(String format, Object… args)

COSC324 Wal’s lectures

© Warwick Irwin 2008 8

Enums (old)
public class Size {

public static final int SMALL = 1;
public static final int MEDIUM = 2;
public static final int LARGE = 3;

}

public class Size {
private String name;
public static final Size SMALL = new Size("SMALL");
public static final Size MEDIUM = new Size("MEDIUM");
public static final Size LARGE = new Size("LARGE");

private Size(String name) {
this.name = name;

}
public String toString() {

return name;
}

}

int howBig = Size.MEDIUM;

Size howBig = Size.MEDIUM;

Enums (new)

public enum Size { SMALL, MEDIUM, LARGE }
Size howBig = Size.MEDIUM;

for (Size s: Size.values())
System.out.println(s);

public enum Size {
SMALL(10),
MEDIUM(14),
LARGE(18);

private int diameter;

public Size(int theDiameter) {
diameter = theDiameter;

}

public void printDiameter() {
System.out.println(diameter);

}
}

for (Size s: Size.values())
s.printDiameter();

OO wisdom

• Fundamentals & principles.
• Data & behaviour – yin & yang.
• Inheritance.
• Design by contract.

Bridging the gap

Requirements

Language primitives
& services

GUI classes

Collection
classes

Types & operations

IO
classes

Utility
classes

…

Distilled wisdom &
design experience &
art & engineering &
methods & idioms &

patterns

Design

Behold!

Client

task()

public void task(Foo f) {
f.bar();

}

Foo

bar()

Fooby

bar()

Foobaz

bar()

COSC324 Wal’s lectures

© Warwick Irwin 2008 9

Fundamentals

• We have only one problem: complexity
• We have only one solution: decomposition

abstractchange
decoupleconnectedness
hide partsnumber of parts
break upsize

DecompositionComplexity

OO mechanisms
classes

bar()

bar() bar()

inheritance

polymorphism

OO semantics

task()

public void task(Foo f) {
f.bar();

}

bar()

bar() bar()

implementation

interface

ab
st

ra
ct

io
n

encapsulation

interface

implementation

Decomposing complexity

Principle: separation of concerns

Principle: keep related data and behaviour together

Student

name
id

StudentDialog

student
display()

1

Hiding

Principle: information hiding

Student

dob: Date
getAge():int
getAgeOn(Date):int

Encapsulation means drawing a boundary around something. It means being able
to talk about the inside and the outside of it.

Information hiding is the idea that a design decision should be hidden from the rest
of the system to prevent unintended coupling.

Encapsulation is a programming language feature. Information hiding is a design

principle. Information hiding should inform the way you encapsulate things, but of
course it doesn't have to. They aren't the same thing. – Ward’s wiki

Encapsulation leak

public class Student {
private Set enrolments;

public Set getEnrolments() {
return enrolments;

}
}

public class Course {
private List enrolments;

public void add(Student s) {
Enrolment e = new Enrolment(s, this);
enrolments.add(e);
s.getEnrolments().add(e);

}
}

public Set getEnrolments() {
return Collections.unmodifiableSet(enrolments);

}

public Student getNthStudent(int n) {
List enrolments = course.getEnrolments();
Enrolment enrolment = (Enrolment) enrolments.get(n);
return enrolment.getStudent();

}

COSC324 Wal’s lectures

© Warwick Irwin 2008 10

Decoupling

Principle: cohesion good, coupling bad

separation of concerns

information hidingdata and behaviour together

Principle: program to the interface,
not the implementation

Coping with change

• Find the solid bits.
o Make them the framework of your program.

• Find the wobbly bits.
o Hide them away.

Principle: encapsulate that which varies

Solid: the problem domain.

Wobbly: your brain.

Principle: hide your decisions

Hide design decisions
• If you chose it, you should hide it.

o Data representations
o Algorithms
o IO formats
o Mechanisms (garbage, scheduling, persistence…)

o Lower-level interfaces
o …

public static void setFinal(String ID) {
Row[] rows = query(“SELECT FROM Students WHERE id = “ + id);
for (int i; i < rows.length; i++)
..

}

public void setFinal() {
final = true;

}

StudentDB Student

Information hiding Coping with change

• Find the solid bits.
o Abstract, high-level concepts.

• Find the wobbly bits.
o Concrete, low-level details.

Principle: make stable abstractions

Principle: make your system open for extension
but closed for modification

The open/closed principle

The open-closed principle

“Software entities (classes, modules, functions, etc.) should
be open for extension, but closed for modification.”
-- Bertrand Meyer, 1988.

FileWriter StringWriter PipedWriter BufferedWriter FilterWriter

close()
flush()
write()

Writer

1

1

Abstract class/interface

polymorphic
methods

“programming by difference”
OO art revisited

Fooblarg

bar()

open/closed

stable

abstraction
Client

task()
Foo

bar()

Fooby

bar()

Foobaz

bar()

program to interface

encapsulate that which varies
hide your decisions

separate concerns

no coupling

COSC324 Wal’s lectures

© Warwick Irwin 2008 11

The yin and yang of OO design

• OO is data modelling
o Focus on data internal to object.

• OO is behaviour modelling
o Focus on services to external world.

Fooby

bar()
blarg()

i: int
Wibble: w

OO is Data Modelling

Student

name
id

Course

code
examDate

* *

Student

name
id

1

*
Enrolment

grade *

1
Course

code
examDate

OO is Data Modelling

Student

name
id

Course

code
examDate

* *
Course

code

CourseOffering

examDate

*Student

name
id

1

*
Enrolment

grade *

1

OO is behaviour modelling

Microwave

setTime()
start()
stop()

MicrowaveTester
Microwave

dinnerPlate()
beverage()
reheatPie()
reheatPizza()
freshVegetables()
frozenVegetables()
jacketPotato()
ricePasta()
easyDefrost()
1()
2()
3()
4()
5()
6()
7()

Inheritance: The Dark Side

• Inheritance mistakes:
o Inheritance for implementation.
o “Is-a-role-of”.
o “Becomes”.
o Over-specialization.
o Violating the LSP.
o Changing the superclass contract.

Principle: favour composition over inheritance
If it can change, it ain’t inheritance.

Inheritance for Implementation

Vector

Stack

addElement()
capacity()
contains()
elementAt()
...

empty()
peek()
pop()
push()

Stack
contents

empty()
peek()
pop()
push()

Vector

addElement()
capacity()
contains()
elementAt()
...

1

Hide your decisions.

COSC324 Wal’s lectures

© Warwick Irwin 2008 12

“is-a-role-of”

Student

Person

Staff

Postgrad Lecturer Tutor Admin

Professor

Person 1 *
Position

Separate concerns.

“Becomes”

EligibleStudent
IneligibleStudent

“becomes”

Student Student

isEligible:bool

Inheritance isn’t dynamic

Over-specialization

Dialectizer

say(words: ArrayList)

AbstractCollection

AbstractSet AbstractList
Set List

HashSet

TreeSet

ArrayList

AbstractSequentialList

LinkedList

SortedSet
InYodaOrderPutWords

List sentence = new Vector();
…
yoda.say(sentence);

Program to the interface

Violating the
Liskov Substitution Principle
“If for each object o1 of type S there is an object o2 of type T such
that for all programs P defined in terms of T, the behavior of P is
unchanged when o1 is substituted for o2 then S is a subtype of T.”
-- Barbara Liskov, 1988

Rectangle

Square

setWidth()
setHeight()
...

setWidth()
setHeight()
...

private void foo(Rectangle r)
{

r.setWidth(5);
r.setHeight(4);
if (r.getWidth() * r.getHeight() != 20)

System.out.print(“huh?”);
}

Design by contract (DBC)

• Contract for dbcLecture():
o When the lecture begins, the student will-

• Be present
• Know OO
• Be conscious
• Not smell too bad
• …

o When the lecture ends, the lecturer will -
• Have explained DBC

Lecturer

dbcLecture()
Student

(TM) Bertrand Meyer
Invented by Tony Hoare Design by contract

Server

service()
Client

…
Server s = new Server();
…
s.service(wibble);
…

Before calling
service, client
checks
everything is
ready. After service,

server promises
it has done its
job.

“Mutual trust”

Preconditions

Postconditions

Invariant
Something the method/class
promises will always be true

COSC324 Wal’s lectures

© Warwick Irwin 2008 13

Design by contract

• Contract for add(k, o)
• Client

o Check dictionary not full
o Check key not empty

• Server
o Ensure key is in dictionary

with associated value.

Dictionary

add(key: String, value: Object): void
lookup(key:value): Object
isFull(): boolean

Client

…
Dictionary d = …;
…
if (!d.isFull()) && !k.isEmpty())

d.add(k, o);

System.out.println(d.lookup(k);
…

Preconditions & Postconditions
public class Dictionary {

…

/** Inserts value into the dictionary at the given key.
* A later call to lookup(key) will return the value.
*
* Preconditions: The dictionary is not full.
* The key is not null or an empty string.
* (It is OK if the dictionary already has an entry
* at this key; the new value replaces the old one.)
* Postconditions: The dictionary contains the value indexed by the key.
*/

public void add(String key, Object value) {

Stack contract

Stack

isEmpty()
isFull()
peek()
pop()
push(o)

precondition: stack not empty
postcondition: stack unchanged

returned last pushed object

precondition: stack not empty
postcondition: stack size decreased by 1

returned last pushed object

precondition: stack not full
postcondition: stack size increased by 1

peek() == o

Contract guidelines
Derived from work of Jim Weirich
& Todd Plessel (websites)

• No precondition on queries.
• It should be safe to ask a question.

• No fine print.
• Don’t require something the client can’t determine I.e. preconditions

should be supported by public methods.
• (It is OK to have postconditions a client can’t verify.)

• Use real code where possible.
• Better to say “!isEmpty()” rather than “the stack must not be empty”. (It’s

what the client must do.)
• Can’t show all semantics in code. (So use english)

• E.g. pop() returns last pushed object.
• No hidden clauses.

• The preconditions are sufficient & complete.
• No redundant checking

• Don’t check that preconditions are satisfied inside server!

lowerFlaps()
lowerLandingGear()
land()
openDoor()

Contracts & inheritance

Plane

deployTailHook()
land()

NavyPlane

lowerLandingGear()
land()

FlyingBoat

RoboPilot

void goHome() {
plane.lowerFlaps();
plane.lowerGear();
plane.land();
plane.openDoor();
hopOut();

}

Precondition:
flaps down &
gear down

Postcondition:
on the ground

Precondition:
flaps down &
gear down &
hook down

Precondition:
flaps down

Postcondition:
on the water

Inheriting a contract

• Contracts are inherited.
o Preconditions can be loosened
o Postconditions can be tightened.
o Invariants can be tightened too.

“The contracts of the ancestors shall be honoured by
the descendants, yea even unto the Nth generation.”

-- Paul Johnson

Principle:require no more, promise no less.

COSC324 Wal’s lectures

© Warwick Irwin 2008 14

lowerFlaps()
lowerLandingGear()
land()
openDoor()

Contracts & inheritance

Plane

land()

TetherPlane

RoboPilot

void goHome() {
plane.lowerFlaps();
plane.lowerGear();
plane.land();
plane.openDoor();
hopOut();

}

Precondition:
flaps down &
gear down

Postcondition:
on the ground

Precondition:
(flaps down &
gear down) | time up

Postcondition:
on the ground & at platform

What is inheritance, really?

• Previously, we said
“a Bar is-a Foo”.

• More precisely,
“a Bar conforms to the contract of Foo”.

Bar

Foo

Square

Rectangle

Formal support for contracts
• DBC developed by Bertrand Meyer in Eiffel

o Keywords in method declaration: require (precondition)
& ensure (postcondition).

• Added to UML as part of Object Constraint
Language (OCL)

• Strong following in formal methods community.
• Some efforts to support it in Java

o http://www.cs.iastate.edu/~leavens/JML/
o http://www.mmsindia.com/DBCForJava.html
o http://www.javaworld.com/javaworld/jw-02-2002/jw-0215-dbcproxy.html
o All use tags in comments, e.g. @pre i < 42, or @requires i < 42

Informal support for contracts

• New keyword in Java 1.4:
o assert expression;
o http://java.sun.com/j2se/1.4/docs/guide/lang/assert.html

o Conditional compilation:
• javac -source 1.4 Thingy.java

o Conditional execution
• java –ea myprog

public void push(Object o) {
assert !isFull(); // throws AssertionError if false.
…
assert size() == oldSize + 1;

}

From the FAQ
Why not provide a full-fledged design-by-contract facility with
preconditions, postconditions and class invariants, like the one in the Eiffel
programming language?

We considered providing such a facility, but were unable to [do it] without
massive changes to the Java platform libraries… Further, we were not convinced
that such a facility would preserve the simplicity that is Java's hallmark. On
balance, we came to the conclusion that a simple boolean assertion facility was a
fairly straight-forward solution and far less risky. It's worth noting that adding a
boolean assertion facility to the language doesn't preclude adding a full-fledged
design-by-contract facility at some time in the future.

The simple assertion facility does enable a limited form of design-by-contract
style programming. The assert statement is appropriate for postcondition and
class invariant checking. Precondition checking should still be performed by
checks inside methods that result in particular, documented exceptions, such as
IllegalArgumentException and IllegalStateException. [Debatable!]

A philosophy for using exceptions
• Use java exceptions iff a contract violation occurs.
• Handling violations

o If possible, fix the problem, otherwise
o if possible, try an alternative approach, otherwise
o clean-up & throw an exception.

• Clean-up: release resources, locks, rollback
transactions, set consistent state…

• When an exception is thrown, catch it anywhere
clean-up is needed, then try the 3 alternatives
above.

• If not handled earlier, catch the exception at the
root level where inputs may be changed.
o In interactive systems, this is usually the event level.

COSC324 Wal’s lectures

© Warwick Irwin 2008 15

A philosophy for using Interfaces

• Interfaces are contracts.
o Whenever a contract can be recognised

independent from a particular
implementation, an interface should be
considered.

o E.g. Stack
o Interfaces can be composed; one class

may implement many interfaces.
o Interfaces can be extended to specialise

contracts.

Contracts & state machines
• State behaviour is part of the contract.

goRed()
goOrange()
goGreen()

TrafficLight

G
O

R
goGreen()

goOrange()

goRed()

EuroLight
G

O

R
goGreen()

goOrange()

goRed()

O
goOrange()goGreen()

Contracts & state machines

goRed()
goOrange()
goGreen()

TrafficLight

EuroLight

goBright()
goDim()

BrightLight

B D
goDim()

goBright()

B D
goDim()

goBright()

B D
goDim()

goBright()

goRed()

goGreen()

goOrange()

Inheritance: The Dark Side revisited
• Inheritance for implementation.

o No intention to honour the inherited contract
• “Is-a-role-of”.

o Merging of 2 contracts
• “Becomes”.

o Switching contracts.
• Over-specialization.

o Contract more specific than necessary
• Violating the LSP.

o Breaking the contract.

Design Patterns

• Grassroots movement in the OO
community, from early 90’s.

• Major emerging trend in industry.
• Massively hyped:

o The biggest advance since OO itself?
o A paradigm shift?

• Essential vocabulary for software
engineers.

COSC324 Wal’s lectures

© Warwick Irwin 2008 16

OOD experience

Getters & setters

if …
else if …
else if …
else if …
else …

while (*dst++ = *src++);

dog.setCollar(collar);
collar.setDog(dog);

Idioms
Structural models:

repository
client-server
layered

Control models:
call-return
manager
broadcast
interrupt-driven

Architectural
models

pipes & filters

event loops & callbacks

interfaces,
groups of abstractions,
wholesome inheritance,
…

collections & iterators

widgets & nested widgets

OODY wisdom?

wrappers, functors,
proxies, factories…

MVC

data structures & algorithms

Design Patterns Roots

OOD experience

Literate
programming

Reuse

Christ
oph

er

Alex
an

der

Design patterns

What is a design pattern?
• Distilled wisdom about a specific problem

that occurs frequently in OO design.
• A reusable design micro-architecture.

• The core of a design pattern is a simple
class diagram with extensive explanation.
o It documents an elegant, widely-accepted way

of solving a common OO design problem.

• Patterns are discovered, as opposed to
written.

The Iterator pattern
• Name:

o Iterator (a.k.a. Cursor)

• Problem:
o Sequentially access the elements of a collection without exposing

implementation.
o Allow for different types of traversals (e.g. different order,

filtering).
o Allow multiple traversals at same time.

List

getFirst()
getNext()
getLast()
getPrevious()
...

Node* current;

• Solution:
o Move responsibility for traversal from the collection into an

Iterator object. It knows current position and traversal
mechanism.

o The collection creates an appropriate Iterator.

Collection

createIterator()
Iterator

first()
next()
isDone()
currentItem()

Client

ConcreteCollection

createIterator()

ConcreteIteratorreturn new ConcreteIterator(this)

Encapsulate that which varies A definition for “Design Pattern”

“A solution to a problem in a context.”

A recurring set of
situations in which
the pattern appliesA set of forces --

goals and constraints
-- that occur in this
context.

A canonical design
form that someone
can apply to resolve
these forces.

-- Patterns-Discussion FAQ

COSC324 Wal’s lectures

© Warwick Irwin 2008 17

Forces
“Criteria that software engineers use to justify
designs and implementations.” -- FAQ

• Correctness
o Completeness, type safety, fault tolerance, security,

transactionality, thread safety, robustness…
• Resources

o Efficiency, space, “on-demand-ness”, fairness, equilibrium,
stability…

• Structure
o Modularity, encapsulation, coupling, independence, extensability,

reusability, context dependence, interoperability…
• Construction

o Understandability, minimality, simplicity, elegance, vrror-
proneness, co-existence with other software, maintainability,
impact on processes, teams, users…

• Usage
o Ethics, adaptability, human factors, aesthetics, economics…

Resolution of Forces
“A pattern should represent a kind of equilibrium of forces.”

• Impossible to prove a solution is optimal;
arguments must be backed up with:
o Empirical evidence for goodness

• The rule of 3: don’t claim something is a pattern unless you
can point to three independent usages.

o Comparisions
• With other solutions, (possibly including failed ones).

o Independent authorship
• Not written solely by their inventors.

o Reviews
• By independent domain and pattern experts.

The GanG of Four (GoF)

•The design patterns book:
o “Design Patterns; Elements of Reusable

Object-Oriented Software”,
Erich Gamma, Richard Helm, Ralph Johnson,
John Vlissides, 1995

o On 3-hour loan in PSL.
o Catalog of 23 design patterns, classified as:

• Creational patterns
• Structural patterns
• Behavioral patterns

o Uses OMT, examples in C++ & Smalltalk

Creational Patterns

Ensure a class only has one instance, and provide a global point of access
to it.

Singleton

Specify the kinds of objects to create using a prototypical instance, and
create new objects by copying this prototype.

Prototype

Define an interface for creating an object, but let subclasses decide which
class to instantiate. Factory method lets a class defer instantiation to
subclasses.

Factory
Method

Separate the construction of a complex object from its representationso
that the same construction process can create different representations

Builder

Provide an interface for creating families of related or dependent objects
without specifying their concrete classes.

Abstract
Factory

Structural Patterns

Provide a surrogate or placeholder for another object to control access
to it.

Proxy
Use sharing to support large numbers of fine-grained objects efficiently.Flyweight

Provide a unified interface to a set of interfaces in a subsystem. Façade
defines a higher-level interface that makes the subsystem easier to use.

Façade

Attach additional responsibilities to an object dynamically. Decorators
provide a flexible alternative to subclassing for extending functionality.

Decorator

Compose objects into tree structures to represent part-whole hierarchies.
Composite lets clients treat individual objects and compositions of
objects uniformly.

Composite

Decouple an abstraction from its implementation so that the two can
vary independently.

Bridge

Convert the interface of a class into another interface clients expect.
Adapter lets classes work together that couldn’t otherwise because of
incompatible interfaces.

Adapter

Behavioral Patterns…

Define an object that encapsulates how a set of objects interact.
Mediator promotes loose coupling by keeping objects from referring to
each other explicitly, and it lets you vary their interaction independently.

Mediator

Provide a way to access the elements of an aggregate object sequentially
without exposing its underlying representation.

Iterator

Given a language, define a representation for its grammar along with an
interpreter that uses the representation to interpret sentences in that
language.

Interpreter

Encapsulate the request as an object, thereby letting you parameterize
clients with different requests, queue or log requests, and support
undoable operations.

Command

Avoid coupling the sender of a request to its receiver by giving more
than one object a chance to handle the request. Chain the receiving
objects and pass the request along the chain until an object handles it.

Chain of
Responsibility

COSC324 Wal’s lectures

© Warwick Irwin 2008 18

… More Behavioral Patterns

Represent an operation to be performed on the elements of an object
structure. Visitor lets you define a new operation without changing the
classes of the elements on which it operates.

Visitor

Define the skeleton of an algorithm in an operation, deferring some
steps to subclasses. Template Method lets subclasses redefine certain
steps of an algorithm without changing the algorithm’s structure.

Template
Method

Define a family of algorithms, encapsulate each one, and make them
interchangeable, Strategy lets the algorithm vary independently from
clients that use it.

Strategy

Allow an object to alter its behavior when internal state changes. The
object will appear to change its class.

State

Define a one-to-many dependency between objects so that when one
object changes state, all its dependents are notified and updated
automatically.

Observer

Without violating encapsulation, capture and externalize an object’s
internal state so that the object can be restored to this state later.

Memento

Documenting Patterns (GoF style)

• Name
• Intent

o Brief synopsis (as on
previous slides)

• Motivation
o The context of the problem

• Applicability
o Circumstances under which

the pattern applies
• Structure

o Class diagram of solution
• Participants

o Explanation of the
classes/objects and their
roles

• Collaborations
o Explanation of how the

classes/objects cooperate
• Consequences

o Discussion of impact,
benefits, & liabilities

• Implementation
o Discussion of techniques,

traps, language dependent
issues…

• Sample code
• Known uses

o Well-known systems
already using the pattern

• Related patterns

Singleton
• Problem:

o Some classes should have only one instance.
• Eg. EnrolmentSystem, PrintSpooler, FileSystem…

o How can we ensure someone doesn’t construct another one?
o How should other code find the one instance?

EnrolmentSystem

+ EnrolmentSystem()

EnrolmentSystem* theSystem;

EnrolmentSystem

+$ getStudents()
+$ getCourses()
…

• Solution:
o Make the constructor private.
o Use a static attribute in the class to hold the one instance
o Add a static getter for the instance

Singleton

-$ uniqueInstance

+$ instance()
- Singleton()

// Lazy initialization approach:
if (uniqueInstance == null)

uniqueInstance = new Singleton();
return uniqueInstance;

• Notes:
o Subclassing Singleton is possible (unlike all-static approach), but

does require more elaborate initialization of uniqueInstance.
o java.lang.Runtime is a singleton class.

Factory Method
• Problem:

o Normally, code that expects an object of a particular class does
not need to know which subclass the object belongs to.
• E.g. a Player in an adventure game uses a Weapon, and does not

need to know exactly what kind of Weapon it is.
o Exception: when you create an object, you need to know its exact

class. The “new” operator increases coupling!
o Need a way to create the right kind of object, without knowing

its exact class.

Player

attack()

a.k.a. Virtual Constructor

Wizard
Fighter

Weapon

hit()

Sword
Wand

if (I am a Wizard)
weapon = new Wand();

else if (I am a Fighter)
weapon = new Sword();

weapon.hit(enemy);

• Solution:
o Move the “new” into an abstract method. (Can be parameterized.)
o Override that method to create the right subclass object.

…
product = factoryMethod();
…

• Notes:
o It is common to have more than one factory method.

E.g. weaponFactory(), treasureFactory(), potionFactory()
o Swing UIManager.getUI(Jcomponent) is a fancy factory method.

Creator

factoryMethod()
doSomething()

Product

ConcreteProduct

ConcreteCreator

factoryMethod()

Return new ConcreteProduct();

loose couplingprogram to the interface

COSC324 Wal’s lectures

© Warwick Irwin 2008 19

Abstract Factory
• Problem:

o Same as factory method, but want to create whole families of
related objects.

• Solution
o Move all the factoryMethods into factory classes.

• E.g.

a.k.a. Kit

WidgetFactory

createScrollBar()
createWindow()

WindowsWidgetFactory

createScrollBar()
createWindow()

Window

WindowsWindow

WindowsScrollBar

ScrollBar

Client

MotifWindow
MotifWidgetFactory

createScrollBar()
createWindow()

MotifScrollBar

keep related behaviour together Observer
• Problem:

o Separate concerns into different classes, but keep them in synch.
• E.g. separate GUI code from model.

o Avoid tight coupling.

SignalFace

display2D()
displayText()
display3D()
…

a.k.a. Dependents
a.k.a. Publish-Subscribe

Going orange
Going red
Going green
…

SignalFace

display()
…

2DSignalFaceGUI

TextSignalFaceGUI

3DSignalFaceGUI

• Solution:
o Separate into Subject and Observers.

• Can have many observers for one subject.
o The Subject knows which objects are observing it, but it doesn’t

know anything else about them.
o When the Subject changes, all Observers are notified.

for (each Observer, o)
o.update();

Subject

attach(Observer)
detach(Observer)
notify()

Observer

update()

0..*

ConcreteSubject

doSomething()
getterA()
getterB()
…

// changed something
notify();

ConcreteObserver

update()

// call subject.getters
…

1
subject

Observer Notes

• Changes are broadcast to all Observers.
o It is up to each Observer to decide if it cares about a particular

change.
• Observers don’t know about each other.

o They are unaware of the true cost of changes to the Subject.
o Complex dependencies and cycles are possible (& should be avoided).

• Observers aren’t told what changed.
o They usually just get all relevant attributes again.
o Figuring out what changed can be a lot of work, and might require

the Observer to retain a lot of the Subject’s state.
o A variant of the pattern allows the update method to contain details

of what changed. (More efficient, but tighter coupling.)
• The Subject should call notify() only when it is in a consistent

state (at end of transaction).
o Beware of subclasses that call base class methods, and the base class

does the notify().

loose coupling

• Subject is a class called Observable; Observer is an interface
• Allows many Observers to many Subjects
• Adds a “dirty” flag to help avoid notifications at wrong time.

• Swing EventListeners are another variant of Observer

Java support for Observer

Observable

addObserver(Observer)
deleteObserver(Observer)
setChanged()
notifyObservers()
notifyObservers(Object)

<<interface>>
Observer

update(Observable, Object)

0..*0..*

ConcreteSubject

doSomething()

// changed something
setChanged();
notifyObservers();

Template Method
• Problem:

o Implement the skeleton of an algorithm, but not the details.

• Solution
o Put the skeleton in an abstract superclass and use subclass

operations to provide the details.

AbstractClass

templateMethod()
primitiveOperation1()
primitiveOperation2()

ConcreteClass

primitiveOperation1()
primitiveOperation2()

…
primitiveOperation1();
…
primitiveOperation2()
…;

open/closed

COSC324 Wal’s lectures

© Warwick Irwin 2008 20

Composite
• Problem:

o When objects contain other objects to form a tree (i.e. a
containment hierarchy), how can client code treat the composite
objects and the atomic objects uniformly?

Giblet

FoodItem

Bread Lard

1..*

addFood()
removeFood()

Meal

addFilling()
removeFilling()

Sandwich

1..*

0..*
eat(FoodItem)
eat(Meal)
eat(Sandwich

Person

• Solution:
o Create an abstract

superclass that represents
both composite and atomic
objects.

• Notes:
o Common for child to know parent.
o Easy to add new components.
o Can make containment too general.
o Swing JComponent uses the Composite pattern.

Component

doSomething()
add(Component)
remove(Component)
getChild(int)

Composite

doSomething()
add(Component)
remove(Component)
getChild(int)

Client

doSomething()

Leaf

child

0..*

open/closedstable abstractions?

Decorator
• Problem:

o Add additional responsibilities to an object dynamically, rather
than through inheritance.

a.k.a. Wrapper

TextPane

TextPaneWithBorder

drawBorder()

ScrollyTextPane

scroll()

StretchyTextPane

stretch()

ScrollyTextPaneWithBorder

scroll()
drawBorder()

StretchyTextPaneWithBorder

stretch()
drawBorder()

• Solution:
o Use aggregation

instead of subclassing

• Notes:
o Can omit abstract Decorator class.
o Only works if Component class is lightweight.
o Swing’s JScrollPane is a Decorator.

Component

doSomething()

ConcreteComponent

doSomething()

Decorator

doSomething()

ConcreteDecoratorA
addedState

doSomething()

ConcreteDecoratorB

doSomething()
addedBehavior()

1

component.doSomething();

component

super.doSomething();
addedBehavior();

open/closedencapsulate that which varies
favour composition over inheritance

Strategy
• Problem:

o Change an object’s algorithm dynamically, rather than through
inheritance.

a.k.a. Policy

Player

attack()

Wizard Fighter

attack()

PinkBelt

attack()

BlackBelt

attack()

MatrixDude

attack()

• Solution:
o Move the algorithms into their own class hierarchy.

Context Strategy

algorithm()

ConcreteStrategyA

algorithm()

ConcreteStrategyB

algorithm()

ConcreteStrategyC

algorithm()

1

• Notes:
o Contexts know different strategies exist (because have to choose one).
o Strategy needs access to relevant context data. (Parameter/reference?)
o AWT (& Swing) LayoutManager is a Strategy.

open/closedencapsulate that which varies
favour composition over inheritance

COSC324 Wal’s lectures

© Warwick Irwin 2008 21

Alexandrian patterns

“Each pattern describes a problem which occurs
over and over again in our environment, and then
describes the core of the solution to that problem, in
such a way that you can use this solution a million
times over, without ever doing it the same way
twice.”
-- Christopher Alexander, A Pattern Language, 77

“It is quite possible that all
the patterns for a house, in
some form, be present and
overlapping in a simple one-
room cabin. The patterns do
not need to be strung out
and kept separate. Every
building, every room, every
garden is better when all the
patterns are compressed as
far as it is possible for them
to be. The building will be
cheaper, and the meanings
in it will be denser.”
-- Alexander, ‘77

• Over 250 patterns for buildings, e.g.:
o Alcoves
o Intimacy Gradient
o Pools of Light
o Common Areas at the Heart
o …

“Pattern Language”

“The means of designing a
building using a pattern
language is to determine the
most general problem to be
solved and to select patterns
that solve that problem.
Each pattern defines
subproblems that are
similarly solved by other,
smaller patterns. Thus we
see that the solution to a
large problem is a nested
set of patterns.”

-- Richard Gabriel, Patterns
of Software, 1995

A pattern language is a set of
interrelated patterns, all sharing some
of the same context, and perhaps
classified into categories.

-- Patterns-discussion FAQ

“When related patterns are woven together
they form a “language” that provides a
process for the orderly resolution of
software development problems. Pattern
languages are not formal languages, but
rather a collection of interrelated patterns,
though they do provide a vocabulary for
talking about a particular problem.”
-- CACM Special Issue on Patterns and

Pattern Languages, Vol. 39, No. 10, ‘96

Abstract Factory meets Singleton…
• Abstract Factory:

• Singleton: Singleton

-$ uniqueInstance

+$ instance()
- Singleton()

AbstractFactory

createProductA()
createProductB()

ConcreteFactory1

createProductA()
createProductB()

ConcreteFactory2

createProductA()
createProductB()

e.g.

WidgetFactory

createScrollBar()
createWindow()

MotifWidgetFactory

+$ getTheFactory()
- MotifWidgetFactory()
+ createScrollBar()
+ createWindow()

-$ theFactory

WindowsWidgetFactory

+$ getTheFactory()
- WindowsWidgetFactory()
+ createScrollBar()
+ createWindow()

-$ theFactory

AbstractFactory

createProductA

ConcreteFactory

Singleton

uniqueInstance

private constructor
instance getter

Iterator meets Factory Method…

Creator

factoryMethod()
doSomething()

Product

ConcreteProduct
ConcreteCreator

factoryMethod()

Collection

createIterator()
Iterator

ConcreteIterator
ConcreteCollection

createIterator()

• Iterator:

• Factory Method:

Client

e.g. Simplified Java Collections

AbstractCollection

iterator()
Iterator

SetIterator
iterator()

Set

Collection

createIterator

Iterator

ConcreteIterator
ConcreteCollection

Creator

factoryMethod

Product

ConcreteProduct

COSC324 Wal’s lectures

© Warwick Irwin 2008 22

e.g. Real Java Collections

Iterator

HashSetIterator

AbstractSet

Collection

createIterator

ConcreteCollection

Creator

factoryMethod

iterator()

HashSet

Collection
AbstractCollection

iterator()

Set

Case study

• Simulated fish tank
o Lots of different kinds of fish
o Only ever one tank
o Multiple views possible
o Schools of fish
o Remoras and barnacles
o Fish spawn new fish

Fish

Guppy Piranah Shark

Singleton

FishTank

-$ theTank

+$ getTheTank()
- FishTank()

Fish

Guppy Piranah Shark

0..*

Singleton

-$ uniqueInstance

+$ instance()
- Singleton()

Only ever one tank Observer

Observable

addObserver(Observer)
deleteObserver(Observer)
setChanged()
notifyObservers()
notifyObservers(Object)

<<interface>>
Observer

update(Observable, Object)

0..*0..*

ConcreteSubject

doSomething()

Fish

Observable FishView

Observer

0..* 0..*

FishTank 0..*

Multiple views possible

Composite
Component

doSomething()
add(Component)
remove(Component)
getChild(int)

Composite

doSomething()
add(Component)
remove(Component)
getChild(int)

doSomething()

Leaf

child

0..*

Guppy Piranah Shark

add(Fish)
remove(Fish)

Fish
0..*

School

add(Fish)
remove(Fish)

Schools of fish Decorator

Component

doSomething()

ConcreteComponent

doSomething()

Decorator

doSomething()

ConcreteDecoratorA
addedState

doSomething()

ConcreteDecoratorB

doSomething()
addedBehavior()

1

component

Guppy Piranah SharkParasite

1

Remora Barnacle

Fish

Remoras and barnacles

COSC324 Wal’s lectures

© Warwick Irwin 2008 23

Factory Method
Creator

factoryMethod()
doSomething()

ConcreteCreator

factoryMethod()

Fish

spawn()

Guppy

spawn()

Piranah

spawn()

Shark

spawn()

Product

ConcreteProduct

Fish spawn new fish The result

FishTank

-$ theTank

+$ getTheTank()
- FishTank()

add(Fish)
remove(Fish)
spawn()

Fish

Guppy

spawn()

Piranah

spawn()

Shark

spawn()

0..*

Observable FishView

Observer

0..* 0..*

0..*

School

add(Fish)
remove(Fish)
spawn()

1

Remora Barnacle

Parasite

spawn()

Patterns: the dark side!

“No discussion of how to use design patterns would
be complete without a few words on how not to use
them. Design patterns should not be applied
indiscriminately. Often they achieve flexibility and
variability by introducing additional levels of
indirection, and that can complicate a design and/or
cost you some performance. A design pattern
should only be applied when the flexibility it
affords is actually needed.”

-- GoF.

Is the GoF God?

“Those who ascribe extraordinary powers to the
Gang of Four will be appalled by our generally
chaotic process of pattern development.”

--John Vlissides, Pattern Hatching, ‘98.

“Ordre ex chaos is a theme in the natural sciences, and we
shouldn’t expect the science of design to be any different.
Patterns are about people working together to discover and
document constructs that contribute to the quality of life of
humanity as a whole. It is a necessarily organic process.”

--James Coplien, Foreward to Pattern Hatching, ‘98.

The bigger picture

GoF
Design patterns

Architectural
patterns

Frameworks

Analysis
patterns

Anti-patterns

Process
patterns

Organizational
patterns

Weird philosophical underpinnings

Protocols

Idioms

Patterns, libraries, & frameworks

• NOT implementations:
o Design patterns

• Reusable abstract solutions.

• Implementations:
o Class libraries

• Reusable software components.
o Frameworks

• Reusable, but incomplete, applications

COSC324 Wal’s lectures

© Warwick Irwin 2008 24

The Hollywood principle

My code
main()

IO
classes GUI

classes

collection
classes

DB
classes

My code
IO
classes

collection
classes

Framework

main()

GUI, DB, …

Christopher Alexander

• Notes on the Synthesis of Form, ‘64
• A City is Not a Tree, ‘65
• A Pattern Language, ‘77
• The Timeless Way of Building, ‘79
• A Foreshadowing of 21st Century Art ‘93
• The Nature of Order, 2002-ish

“A year or two ago, I was astonished to get several letters from different people in
the computer science field, telling me that my name was a household word in the
software engineering community: specifically in the field of object-oriented
technology. I had never even heard of object-oriented programming, and I had
absolutely no idea that computer scientists knew my work, or found it useful or
interesting; all this was a revelation to me.”
-- Alexander, Foreward to Patterns of Software, ‘96.

“Objective beauty”

Beauty is in the eye of the beholder.

There are few fields that blend art and science:
Architecture is one, and computer science is another.
-- Richard Gabriel.

Alexander would take different carpet designs, or different configurations of
colored beads, and then ask observers to tell him which of two designs (or
configurations) was more beautiful or pleasing to them and why. Confoundingly
enough, it appeared that what we all might think of as being purely "in the eye of
the beholder" was in fact less subjective than we believed. Apparently the
overwhelming majority of individuals from all various walks of life seemed to
converge on what they felt was the most pleasing or beautiful.

Alexander tried to carefully study the different characteristics or "properties"
which, when present, seemed to trigger a preference in observers for designs
which possessed that property. Certain things like centers, symmetry, and
"effective" use of positive and negative space, kept recurring as aspects to which
all people seemed aesthetically attracted. Alexander was trying to use the results
of these experiments to verify/validate to his belief that beauty, is in fact
objective (at least at its deepest and most fundamental levels of recognition).

-- James Coplien

QWAN & other “weird” stuff

Timelessness

Aliveness
Wholeness

Piecemeal growth

Organic order

…

The Quality Without a Name

Users should be involved in
design.
Designers should be involved in
construction.
Constructions should evolve.

The existence of a master plan alienates
the users… After all, the very existence of
a master plan means, by definition, that the
members of the community can have little
impact on the future shape of their
community, because most of the important
decisions have already been made. In a
sense, under a master plan people are
living with a frozen future, able to affect
only relatively trivial details. … people
lose the sense of responsibility for the
environment they live in, and realize that
they are merely cogs in someone else’s
machine…

Second, neither the users nor the key
decision makers can visualize the actual
implications of the master plan.
-- Alexander, ‘75

Excellence

In my life as an architect, I find that the single thing which inhibits
young professionals, new students most severely, is their
acceptance of standards that are too low. If I ask a student
whether her design is as good as Chartres, she often smiles
tolerantly at me as if to say, “Of course not, that isn’t what I am
trying to do… I could never do that.”

COSC324 Wal’s lectures

© Warwick Irwin 2008 25

There are programs we can look at and about which we say, “no
way I’m maintaining that kluge”. And there are other programs
about which we can say, “Wow, who wrote this!”…

Computer scientists who try to write patterns
without understanding [the quality without a
name] are quite likely not following Alexander’s
program, and perhaps they are not helping
themselves and others as much as they believe.
Or perhaps they are doing harm.

-- Richard Gabriel

The Nature of Order

• Alexander’s magnum opus
o 4 volumes:

• Book 1: The Phenomenon of Life
• Book2: The Process of Creating Life
• Book3: A Vision of a Living World
• Book4: The Luminous Ground

We've all been captivated by this "patterns" stuff in the
software community as of late, but for Alexander, this was
20 years ago and his ideas have evolved into bigger and
better things.” -- Brad Appleton

http://www.natureoforder.com/overview.htm

“One of the twentieth century’s most important documents.”
-- Nikos Salingaros

“This will change the world as effectively as the advent of
printing changed the world.”

-- Doug Carlston (former pres. of Broderbund)

Here is acclaimed architect Christopher Alexander’s four volume masterwork:
the result of 27 years of research and a lifetime of profoundly original thinking.

Consider three vital perspectives on our world:
• A scientific perspective
• A perspective based on beauty and grace
• A commonsense perspective based on our intuitions about everyday life

This groundbreaking work allows us to form one picture of the world in which
all three perspectives are interlaced. It opens the door to 21st-century science
and cosmology.

-- Inside the jacket of The Nature of Order

With the publication of The Nature of Order and with the mature
development of my work in construction and design, the problems
that I began to pose 35 years ago are finally being solved. There
are immense difficulties, naturally, in implementing this program…
But the feasibility of the whole matter and the extent to which it is
well-defined can, I think, no longer be in doubt. What is most
important is that all this can actually be done.
…
I get the impression that the road seems harder to software people
than maybe it did to me, that the quality software engineers might
want to strive for is more elusive because the artifacts -- the
programs, the code -- are more abstract, more intellectual, more
souless than the places we live in every day.

-- Alexander

The redemption of hacking?

As it turns out, the type of process described in The Nature of Order is very
much like what members of the so called "gentlemen hacker" culture (which
sprang out of MIT in the 60s) used to build their systems. Examples of such
"gentlemen hackers" are/were: Doug Lea, Richard Gabriel, Don Knuth, Sadly,
most people failed to realize that, although these processes appeared to lack
rigorous formality, they did in fact entail a great deal of discipline, integrity, and
intellectual rigor that stemmed from pride in artisanship, and in one's craft in
general. These profoundly insightful "hackers" looked at the system as "a whole"
rather than as the mere sum of its parts. It is unfortunate that this lack of formality
was misconstrued as a lack of discipline, transforming the word "hacker" from
something to be emulated, into something which is now loathed within software
engineering circles that place great emphasis upon process definition and
improvement.

-- Jim Coplien

More pattern resources
• PoSA (a.k.a GoV) Pattern-oriented software architecture, Frank Buschmann et.al. ‘96

o Primarily addresses architectural patterns.
• Patterns of Software, Richard Gabriel, 1996

o Philosophical discussion of Alexandrian and software patterns.
o May cause brain damage.

• PLoP 1, 2, 3, & 4. Pattern Languages of Program Design
o Shows background working behind patterns.

• Patterns in Java, Volume 1 & Volume 2, Mark Grand, 1999
o Helpful translations of GoF patterns.
o Beware: extremely general definition of pattern.

• Head First Design Patterns, Eric & Elisabeth Freeman
o GoF patterns, with attitude.

• The Hillside Group (a.k.a. the patterns homepage)
o www.hillside.net/patterns

• The Portland Pattern Repository
o http://c2.com/ppr/

• The Patterns-Discussion FAQ
o http://gee.cs.oswego.edu/dl/pd-FAQ/pd-FAQ.html

COSC324 Wal’s lectures

© Warwick Irwin 2008 26

A parting thought…

Technology, science, engineering, and
company organization are all secondary
to the people and human concerns in the
endeavor. Companies, ideas, processes,
and approaches ultimately fail when
humanity is forgotten, ignored, or placed
second. Alexander knew this, but his
followers in the software pattern language
community do not. Computer scientists
and developers don’t seem to know it
either.

-- Richard Gabriel.

